BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 42 2272—2275 (1969)

The Spectrophotometric Determination of Zirconium(IV) with Bromopyrogallol Red*1

Takayoshi Sakai*2 and Yûko Funaki*

Chemical Department, Faculty of Science, Hirosaki University, Bunkyô-chô, Hirosaki (Received November 25, 1968)

Zirconium(IV) reacts with an excess of bromopyrogallol red to form a violet complex. The constant absorbance of a solution containing the complex is obtained in the pH range from 5.0 to 5.4 at 670 m μ . About 25 min is required to complete the chelate formation in a boiling water bath. The complex thus formed is stable for at least 3 hr. The color system obeys Beer's law in the range from 4 to 35 μ g zirconium in 25 ml. The sensitivity of the reaction is 0.002 μ g per cm² for an absorbance of 0.001. In composition the complex has a metal-to-ligand ratio of 1:2. The molar absorptivity and the apparent formation constant of the complex are calculated to be 7.01×10⁴ at 670 m μ and 1.11×10⁹ at pH 5.2 respectively. The effect of diverse ions on the determination is examined.

Bromopyrogallol red (BPR or H₄L) has been used as a reagent for the spectrophotometric determination of many metallic cations, including silver(I),¹⁾ uranium(IV),²⁾ yttrium(III) and cerium-(III),³⁾ titanium(IV)⁴⁾ bismuth(III),⁵⁾ indium-(III),⁶⁾ niobium(V),⁷⁾ scandium(III),⁸⁾ and thorium(IV).⁹⁾ It is found that BPR reacts with zirconium(IV) under heating to form a violet complex. The present paper describes the

fundamental conditions for applying the reaction to the spectrophotometric determination of zirconium.

Experimental

Reagents and Apparatus. Standard Zirconium: Solution. About a 1×10^{-2} M zirconium(IV) solution.

^{*1} This work was partly presented at the Tohoku Branch Meeting of the Chemical Society of Japan, Yamagata, October, 1966.

^{*2} Present address: Hachinohe Technical College, Tamonoki, Hachinohe, Aomori.

^{*3} Present address: Department of Chemical Engineering, Faculty of Engineering, Tohoku University, Aramaki, Sendai.

¹⁾ R. H. Dagnall and T. S. West, *Talanta*, **8**, 711 (1961).

V. F. Lukjaov and E. P. Duderova, Zh. Analit. Khim., 16, 60 (1960).

J. Herrington and K. C. Steed, Anal. Chim. Acta, 22, 180 (1960).

⁴⁾ V. Suk, I. Nemcova and M. Malat, Collect. Czech. Chem. Commun., 30, 2538 (1965).

⁵⁾ V. Suk and M. Smetanava, ibid., 30, 2535 (1965).

⁶⁾ Sn. T. Talipan, Kr. S. Abdultaeva and G. P. Gorkovaya, *Uzbeksk. Khim.*, **6**, 16 (1962): *Chem. Abstr.*, **58**, 12122 (1963).

⁷⁾ R. Belcher, T. V. Ramakrishna and T. S. West, *Talanta*, **12**, 681 (1965).

⁸⁾ T. Shimizu, ibid., 14, 473 (1967).

K. Tonosaki and T. Sakai, This Bulletin, 42, 456 (1969).

was prepared by dissolving a guaranteed zirconyl nitrate dihydrate in 0.2 N perchloric acid. The solution was standardized by EDTA titration, using xylenol orange¹⁰) as the indicator.

The solutions of BPR, diverse ions, and the buffer, and the apparatus were the same as those used in a previous work.⁹⁾

All the measurements were made at 25 ± 0.5 °C.

Standard Procedure. To a sample solution containing up to $32 \mu g$ of zirconium in a 50 ml Erlenmeyer flask, 1.2 ml of a $1 \times 10^{-3} \text{ m}$ BPR solution and 10 ml of a 0.25 m acetate buffer solution with a pH value of 5.2 were added. The mixture was then heated in a boiling water bath for 25 min. The solution was cooled with running water to room temperature. transferred into a 25 ml volumetric flask, and then diluted to the mark with water. After 10 min, the absorbance of the solution was measured at $670 \text{ m}\mu$ using a reagent blank as the reference.

Results and Discussion

Absorption Curves. Figure 1 shows that the maximum absorption of the zirconium - BPR complex is found at 670 m μ .

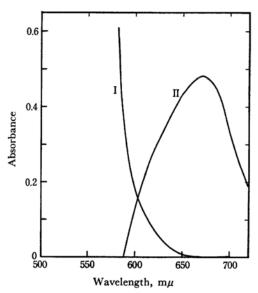


Fig. 1. Absorption curves of BPR and its zirconium complex.

BPR: 4.80×10^{-5} M, Zr(IV): $18.2 \mu g$ in 25 ml $(7.97 \times 10^{-6}$ M), μ : 0.1, I: BPR vs. water, II: zirconium-BPR complex vs. BPR, pH: 5.23.

The Effect of pH. As is shown in Fig. 2, the maximum absorbance is obtained in the pH range from 4.7 to 4.8. The complex formed below pH 4.9 showed a tendency to precipitate on standing, probably because of its uncharged form.*4

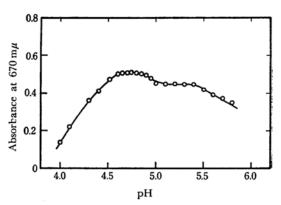


Fig. 2. Effect of pH. Zr(IV): 18.2 μ g, BPR: 4.00×10^{-5} M, μ : 0.1, Reference: Reagent blank

A constant absorbance is obtained over the pH range from 5.0 to 5.4. All the absorbance readings were taken within this range, since the absorbance of the solution containing the complex remains almost constant for at least 3 hr after heating.

The Effect of Heating Time. It requires several hours at room temperature to complete the reaction between zirconium and BPR. The reaction was, however, accelerated by heating. The maximum absorbance was obtained when a solution containing zirconium and BPR was heated in a boiling water bath for from 20 to 35 min.

The Effect of the Amount of Reagent. The maximum, and almost constant, absorbance was obtained when from 1 to 3 ml of a 1×10^{-3} M BPR solution was added to a solution containing 18.2 μ g of zirconium. The order of the addition of the reagents was not critical.

Calibration Curve. Beer's law is found to hold in the range from 4 to 35 μ g of zirconium in 25 ml. The sensitivity of the reaction was calculated according to Sandell's notation¹¹⁾ and found to be 0.002 μ g of zirconium per cm². The reproducibility of the method was examined using a solution containing 18.2 μ g of zirconium. From the data obtained by eleven determinations, the standard deviation was calculated to be 0.003 (2.8%) in absorbance.

The Effect of Diverse Ions. The results are listed in Table 1.

A Comparison with Other Methods. Table 2 indicates that the proposed method is comparable with the morin method¹⁶) in sensitivity.

K. Ueno "Kireto Tekitei (Chelatometric Titration)" (in Japanese), Nankodo, Tokyo (1960), p. 325.

^{*4} It was found experimentally that zirconium forms a 1:1 complex with BRR at lower pH values. Since, as will be mentined below, BPR may exist mainly as the anionic species, H_3L^- , in the pH range from 1 to 4, the formula of the 1:1 complex may be represented as an uncharged form, $ZrO(H_2L)$.

¹¹⁾ E. B. Sandell, "Colorimetric Determination of Traces of Metals," Interscience Publishers, New York (1950), p. 49.

Table 1. Effect of diverse ions at pH 5.2

Zirconium taken:	$18.2 \mu g (0.20 \mu mol)$
Tolerance limit*	Ions
μ mol	_
large excess	chloride
0.2	sulfate, Co, Pb
0.1-0.05	Ag, Cd, In, fluoride, oxalate
0.04 - 0.01	Be, Bi, Ce(III), Cu, Ga, Hg, La,
	Mn, Ni, Pd, Sm, Th(IV), Ti(IV),
	Tl(I), Tl(III), U(VI), V(IV),
	W(VI), Y, Yb, Zn, phosphate,
	tartrate, citrate
0	Cr, Fe(III), Nd, EDTA

^{*} Value which gives less than 3% relative error

Composition of the Complex. The method described by Benesi and Hildebrand²⁰⁾ is used to determine the composition of the complex. Since BPR may exist mainly as the anionic form, H_2L^{2-} , in the pH range from 5 to 8,*5 and zirconium(IV), as ZrO^{2+} , the formation of the complex with a metal-to-ligand ratio of 1:n can be represented as;

$$ZrO^{2+} + nH_2L^{2-} \rightleftharpoons ZrO(HL)_n^{(3n-2)-} + nH^+$$
 (1)

$$K' = [\{ZrO(HL)_n\}^{(3n-2)-}]/[ZrO^{2+}][H_2L^{2-}]^n$$
 (2)

where K' is the apparent formation constant at a given pH value. The following relation may finally be derived as a result of the transformation of

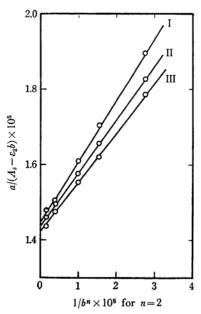


Fig. 3. Plots of $a/(A_s - \varepsilon_2 b)$ vs. $1/b^n$ at pH 5.5. Zr: 3.87×10^{-6} M, BPR: $7.74 \times 10^{-5} - 2.32 \times 10^{-4}$ M, μ : 0.5, I: 680 m μ , II: 665 m μ , III: 670 m μ

$$a/(A_s - \varepsilon_2 b) = 1/\varepsilon_3 + 1/K'\varepsilon_3 b^n \tag{3}$$

where A_s is the absorbance of the solution containing the complex and ligand added in excess to a definite

Table 2. Comparison with other methods

Reagent	Molar absorptivity ×10 ⁴	Sensitivity µg/cm²
Bromopyrogallol Red	7.01 (670 mµ)	0.002
Pyrocatechol Violet ¹²⁾	4 $(655 \mathrm{m}\mu)$	
Gallein ¹³)	$0.77 (530 \mathrm{m}\mu)$	0.02
N-Methyl anabasine- α -azoresorsinol ¹⁴)	1.05 $(530 \mathrm{m}\mu)$	
Arsenazo III ¹⁵)	$12.5\pm0.3~(670\mathrm{m}\mu)$	
Morin ¹⁶)	7.30 $(420 \mathrm{m}\mu)$	
8-Hydroxyquinoline ¹⁷)	1.47 $(386 \mathrm{m}\mu)$	
Chromazurol S18)	$4.1\pm0.04~(560~\mathrm{m}\mu)$	
Molybdate ¹⁹⁾	$0.475 (725 \mathrm{m}\mu)$	

¹²⁾ J. P. Young and J. C. White *Talanta*, 1, 263 (1958).

¹³⁾ L. Kekedy and G. Balogh, Studia Univ. Babes-Bolyai, Ser. Chem., 8, 204 (1963); Chem. Abstr., 61, 12631 (1964).

Sh. T. Talipov, R. Kh. Dzhiynbaeva and M. Abdurakhmanov, Nauchn Tr. Tashkentsk. Gos. Univ. No. 264, 146 (1964); Chem. Abstr., 65, 14427 (1966).
N. V. Mel'chakova, M. N. Stanislavskaya and V. M. Peshkova, Zh. Analit. Khim., 19, 701 (1964); Chem. Abstr., 61, 7699 (1964).

¹⁶⁾ T. Ito and Y. Hoshino, Bunseki Kagaku (Japan Analyst), 13, 257 (1964).

¹⁷⁾ R. T. Van Santen, J. H. Schlewitz and C. H.

Toy, Anal. Chim. Acta, 33, 593 (1965).

¹⁸⁾ I. S. Mustafin and V. S. Shchukina, Zh. Analit. Khim., 21, 309 (1966); Chem. Abstr., 65, 3000 (1966). 19) J. C. Guyon and C. C. Clowers, Anal. Chim. Acta, 37, 401 (1967).

²⁰⁾ M. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949).

^{*5} The stepwise acid dissociation constants of BPR have been determined by Suk²¹⁾ as $K_1 = (6.92 \pm 0.27) \times 10^{-1}$, $K_2 = (4.07 \pm 0.09) \times 10^{-5}$, $K_3 = (7.41 \pm 0.10) \times 10^{-10}$, and $K_4 = (5.37 \pm 0.32) \times 10^{-12}$.

²¹⁾ V. Suk, Collect. Czech. Chem. Commun., 31, 3127 (1966).

August, 1969] 2275

amount of zirconium, where a and b are the total concentrations of zirconium and the ligand respectively, and where ε_2 and ε_3 are the molar absorptivities of the ligand and the complex respectively. Only a choice of n equal to two made the data interpretable, showing that a 1:2 complex is formed between zirconium and BPR. Some of the results are shown in Fig. 3. From the intercept of the straight line, ε_3 was calculated to be 7.01×10^4 at $670 \text{ m}\mu$, and K', as a mean value of the

values obtained at five wavelengths between 660 and 680 m μ , was found to be 1.11×10^9 at pH 5.2.

The authors wish to express their hearty thanks to Professor Kôichi Tonosaki for his kind advice and instruction throughout this study. They also wish to extend their thanks to Dr. Makoto Otomo for his valuable suggestions.